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Introduction

Intrusion detection systems (IDSs) are primarily focused on identifying potential incidents, i.e. unau-
thorized access, information retrieval, and log-in attempts. In addition, IDSs are also used for other 
purposes, such as identifying various problems related to certain security policies, recording all exist-
ing and potential threats, and deterring users from violating security policies (Eskin, 2000; Fengmin, 
2003). � erefore, it can be said that the basic role of IDSs is to register all the important information 
and knowledge related to the observed events, to inform the security administrators about the re-
corded events and to generate the corresponding reports. � ese systems use several di� erent response 
techniques, which include, among other things, detecting the intrusion and stopping the attack itself, 
changing the security environment, or changing the content of the attack (Čisar P. , Maravić-Čisar, 
Popović, Kuk, & Vuković, 2022; Čisar, Popović, Kuk, & Vuković, 2022).

In anomaly detection, two approaches are commonly used: algorithms with adaptive and non-adap-
tive (� xed) thresholds. Most authors (Sorensen, 2004; Spathoulas & S. Katsikas, 2010) are of the opin-
ion that systems with � xed thresholds are not robust enough and that tests with such thresholds will 
give unsatisfactory results with normal network tra�  c variations. On the other hand, the adaptive 
approach is a way that has a positive e� ect on reducing the number of false positives (Jovanović et 
al., 2018). However, the adaptive approach also has the disadvantage that the security system based 
on this approach can be fooled by applying an adequate attack strategy. Otherwise, several di� erent 
versions of adaptive algorithms are used in practice, developed with the intention of improving the 
e�  ciency of intrusion detection (Čisar & Maravić-Čisar, 2010a; 2010b; 2012)

� e basic assumption in this article is the interpretation of network tra�  c in the form of time series, 
whose pronounced � uctuations show potential intrusions into the system. � erefore, in order to suc-
cessfully detect them, an adaptive threshold in the form of a random variable (RV) is introduced, 
with which such intrusions can be registered. Also, it is easy to see that the observed time series have 
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non-linear and non-stationary dynamics, which is usually re� ected in the increasing complexity of 
their stochastic structure. In order to describe their dynamics, the so-called General Split-BREAK 
(GSB) process is proposed here, which has already been applied in modelling various time series with 
persistent and accentuated � uctuations. � e basic form of this stochastic model was introduced by 
(Stojanović, Popović, & Popović, 2011; 2014; 2015), where RVs with Gaussian distribution are used as 
an innovation series. � en, some recently and more general results of the Split-BREAK process, with 
Laplacian and Cauchy distributions, respectively, are reported by (Jovanović, Stojanović, Kuk, Popo-
vić, & Čisar, 2022), as well as (Ljajko, Stojanović, Tošić, & Božović, 2023). It is worth to point out that, 
for the purpose of practical application to intrusion detection, some of these forms of GSB processes 
are considered and then compared for their e� ectiveness.

De� nition and Main Properties of the GSB Process

Basic assumptions about the GSB process can be made based on its corresponding time series, as is 
given below. Speci� cally, the GSB process consists of the following three components:

ι)  is an innovation series, that is, independent identically distributed (IID) random variables 
(RVs) with some stochastic distribution of absolute-continuous type; 

ιι)  is a series of martingale means given by recurrence relation:

                                                                           (1)

where is almost surely (as) , , and

                                                                                     (2)

is the Noise-Indicator with the critical value ;

ιιι)  is a the basic GSB series given as an adaptive decomposition:
                                                                    

                                                                         (3)

In practice, the innovations  are interpreted as a noise series, that is represent deviation (� uctu-
ating) component of the GSB process. Depending on the choice of stochastic distribution, we further 
distinguish three forms of these innovations, with Gaussian, Laplacian and Cauchy distributions. In 
the following Table 1 are shown their basic stochastic characteristics: density functions, denoted with the following Table 1 are shown their basic stochastic characteristics: density functions, denoted with 

, as well as means and variances, which are well-known statistical measures of average and dis-
persion, respectively. It can be easily noticed that all these distributions depend on the corresponding 
parameters that can also be observed in Table 1. At the same time, it is worth emphasizing that the 
symmetry of these distributions is assumed, so that all of them, expecting a Cauchy distribution, have 
zero-means. Finally, variances of the Gaussian and Laplace distributions also depend on these param-
eters, but the variance of the Cauchy distribution is in� nite.
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Table 1 Key stochastic characteristics of innovations ( ) of the GSB process) of the GSB process

Distribution Gaussian Laplacian Cauchy

Density 

Mean 0 0

Variance

� e second component, the martingale mean series , represents predictive and stability compo-, represents predictive and stability compo-
nent of the GSB process, that is the values without emphatic � uctuations. � e main role in this has the nent of the GSB process, that is the values without emphatic � uctuations. � e main role in this has the 
parameter , named the critical value of reaction, which indicates signi� cance of previous realiza-, which indicates signi� cance of previous realiza-
tions of innovations  to be included in Equation (1). More precisely, when  to be included in Equation (1). More precisely, when , the martingale , the martingale 
mean  is equal to its previous value  is equal to its previous value , and the main GSB series ( ), given by Equation (3), is ), given by Equation (3), is 
then realized with ‘low’ � uctuation. � is means that there is no intrusion into a speci� c security system. then realized with ‘low’ � uctuation. � is means that there is no intrusion into a speci� c security system. 
Otherwise, the case  indicates a pronounced � uctuation of the series ( indicates a pronounced � uctuation of the series ( ), and thus there is a ), and thus there is a 
reason that there was an intrusion and the activation of the corresponding alarm. It is worth pointing reason that there was an intrusion and the activation of the corresponding alarm. It is worth pointing 
out that the series  and  and  depend on the time moment  depend on the time moment  in which they are observed. In  in which they are observed. In  in which they are observed. In 
that way, using the previously obtained results on the GSB process, the basic distributional properties of that way, using the previously obtained results on the GSB process, the basic distributional properties of 
these series (except in the case of Cauchy distributed innovations) can be shown as follows:these series (except in the case of Cauchy distributed innovations) can be shown as follows:

ι) Both series  and  have the constant and equal mean .

ιι) � e variances of series  and  are, respectively,

where .

ιιι) � e correlation functions of series  and  are, respectively, are, respectively,

According to the presented results, it follows that series  and  have the non-constant vari- have the non-constant vari-
ances, dependent on the time  in which they are observed. � erefore, the correlation functions  in which they are observed. � erefore, the correlation functions 

 and  depend on both time variables , which con� rms the non-stationarity of these , which con� rms the non-stationarity of these 
time series. We emphasize that the condition of non-stationarity is fully consistent with the charac-time series. We emphasize that the condition of non-stationarity is fully consistent with the charac-
teristics of real tra�  c � ows in a certain information system. On the contrary, the stationarity is very teristics of real tra�  c � ows in a certain information system. On the contrary, the stationarity is very 
important and useful property of time series. It enables, among other things, a simple estimation of important and useful property of time series. It enables, among other things, a simple estimation of 
the parameters of the corresponding stochastic model. For these reasons, we de� ne another important the parameters of the corresponding stochastic model. For these reasons, we de� ne another important 
GSB series, the so-called increment series:

                                                                                                              (5)                                                    (5)

Using Equations (1)-(3), increments can be represented as follows:

                                                                                                                                     (6)                                                                  (6)
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where . In that way, the series  is stationary stochastic process that  is stationary stochastic process that 
operates in two regimes:

ι) Emphasized � uctuations of innovations ( ) in the previous moment of time imply equality ) in the previous moment of time imply equality 
. � us, Equation (6) becomes . 

ιι) If the square of � uctuations do not exceed the critical value , it follows . � us, 
the value of  is given as a linear integrated MA(1) process:

Obviously, the series  has a structure similar to the ordinary � rst-order moving average (abbr.  has a structure similar to the ordinary � rst-order moving average (abbr. 
MA(1)) processes, which can be applied in their examination. With earlier assumptions, the basic MA(1)) processes, which can be applied in their examination. With earlier assumptions, the basic 
properties of this series, obtained by some simple computation, can be expressed as follows:properties of this series, obtained by some simple computation, can be expressed as follows:

� eorem 1. Let  be the time series de� ned by Equations (5) and (6). � e mean and the variance  be the time series de� ned by Equations (5) and (6). � e mean and the variance 
of this series are, respectively,

where  In addition, the correlation function of this series is given as fol- In addition, the correlation function of this series is given as fol-
lows:

As will be seen below, the speci� c structure of the stationary series  is important in practical ap- is important in practical ap-
plication of the GSB process, as well as in estimating its parameters. As an illustration, Figure 1 shows plication of the GSB process, as well as in estimating its parameters. As an illustration, Figure 1 shows 
realizations of the above-mentioned GSB time series, obtained by Monte Carlo simulations of the realizations of the above-mentioned GSB time series, obtained by Monte Carlo simulations of the realizations of the above-mentioned GSB time series, obtained by Monte Carlo simulations of the realizations of the above-mentioned GSB time series, obtained by Monte Carlo simulations of the 
series  with Gaussian distribution.

Figure 1 Dynamics of the GSB series with Gaussian innovations. (Parameters
values are:  and .)

Parameters Estimation Procedures

In this part, we are discussed the procedures for estimating (unknown) parameters of the GSB pro-In this part, we are discussed the procedures for estimating (unknown) parameters of the GSB pro-
cess, primarily the critical value  which determines the stochastic threshold of our model. In  which determines the stochastic threshold of our model. In 
that cause, an increment series ( ) is commonly used, because it represents the only observable and ) is commonly used, because it represents the only observable and 



Stochastic modeling of the network intrusion detection threshold 15

stationary series of GSB processes. Since the series ( ) is close to the standard MA models, similar 
estimation procedures are used here. Nevertheless, the speci� city of the series ( ) requires some 
additional estimation procedures, as well as the examination of the quality of the estimators thus ob-
tained. In the following, we will brie� y describe these procedures, � rst for the Gaussian and Laplace 
innovations (
tained. In the following, we will brie� y describe these procedures, � rst for the Gaussian and Laplace 

).

� e � rst form of estimation give the so-called moments-based estimators, obtained from the theoretical 
moments of the basic GSB series. Using � eorem 1, that is, by solving the expression for the � rst cor-
relation of the series  on , the estimator of this parameter is easily obtained as follows:

                                                                      
                                                             (7)

Here,  is the sample autocorrelation of , and according to 
Equation (7) it is easy to see that  is the appropriate estimate if and only if , that is,

� erea� er, using the estimator  in the cases of Gaussian and Laplacian innovations ( ), the appro-
priate parameters 
� erea� er, using the estimator 

 and 
� erea� er, using the estimator 

 are, respectively:

                                                                   
            (8)

It is worth pointing out that in (Jovanović, Stojanović, Kuk, Popović, & Čisar, 2022) and (Stojanović, 
Bakouch, Ljajko, & Božović, 2023) is proven that the estimators ,  and  are strictly consistent 
and asymptotically normal. Moreover, in the case of Gaussian innovations the RVs  have a 
chi-square distribution 
and asymptotically normal. Moreover, in the case of Gaussian innovations the RVs 

. � us, the estimate of the critical value  can be simply obtained from the 
equality: 

                                                                                                                                      (9)

where  is the corresponding cumulative distribution function (CDF). Similarly, when ( ) are 
with Laplacian 

 is the corresponding cumulative distribution function (CDF). Similarly, when (
 distribution, the critical value estimator 

 is the corresponding cumulative distribution function (CDF). Similarly, when (
 can be easily found from the 

equation:

whose solution is

                                                                   
                                                             (10)

and  is the CDF of the Laplacian innovations .

It can be shown that moment-based estimators are not the most e�  cient estimators of GSB process 
parameters. In order to obtain more e�  cient estimators of the observed parameters, the so-called 
modi� ed Gauss-Newton estimation procedure for nonlinear functions can be used. First, we can write 
Equation (6) as:

or, in the functional form,
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Using the estimator , obtained according to the previously mentioned procedure, for an arbitrary , obtained according to the previously mentioned procedure, for an arbitrary 
 can be recursively computed values:

                                                                                                             (11)                                                  (11)

where the initial values are  and  Additionally, if we de� ne a series: Additionally, if we de� ne a series:

                                                                                              (12)                                           (12)

where  and , using the mentioned properties of RVs  and , it fol-
lows that  is a stationary and ergodic series of RVs with:

and correlation function  Now if we de� ne the so-called residual series: Now if we de� ne the so-called residual series:

                                                                        (13)                              (13)
it can be shown (see, c.f. (Jovanović, Stojanović, Kuk, Popović, & Čisar, 2022)) that  are 
mutually non-correlated RVs. � us, Equation (13) represents a linear autoregressive (AR) process mutually non-correlated RVs. � us, Equation (13) represents a linear autoregressive (AR) process 

 with innovations 
mutually non-correlated RVs. � us, Equation (13) represents a linear autoregressive (AR) process 

. From here, by applying the regression procedure, another . From here, by applying the regression procedure, another 
estimator of the threshold parameter  can be obtained:

                                          
                              (14)                              (14)

Here, according to Equations (12) and (13), the above values can be iteratively calculated:Here, according to Equations (12) and (13), the above values can be iteratively calculated:

Similar to previous moment-based estimators, the estimator  allows to obtain an estimator of the  allows to obtain an estimator of the 
critical value , as a solution of the equation:

                                                                                                                                       (15)                                                               (15)

Let us notice that the previously obtained estimators  (as well as ), that is, the modelled values ), that is, the modelled values 
of innovations 
Let us notice that the previously obtained estimators 

, de� ned by Equation (11), can be used to obtain the estimators of parameter , de� ned by Equation (11), can be used to obtain the estimators of parameter . 
� ereby, it is well-known that for the Gaussian, as well as the Laplace innovations , the so-called , the so-called 
maximum likelihood (ML) method provides the most e�  cient estimates of the parameter maximum likelihood (ML) method provides the most e�  cient estimates of the parameter . In the 
case of our GSB process with Gaussian innovations, the ML estimator can be obtained according to case of our GSB process with Gaussian innovations, the ML estimator can be obtained according to 
Equations (1) and (2), that is, based on the maximization of the log-likelihood function:
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By solving equation  the estimator of the parameter  is obtained as the 
sample variance of the series :

In the case of Laplacian innovations , the ML estimator can be obtained by maximization of the 
log-likelihood function:

In the same way as in the previous one, solving equation , as well as Equation 
(3), give the estimator of scale parameter  as the mean absolute deviation (MAD):

Finally, estimators of the mean of the GSB process, that is, the parameter  can be obtained as 
the sample mean of series 
Finally, estimators of the mean of the GSB process, that is, the parameter 

:

� is is unbiased estimator, that is, , but it can be easily shown that its variance is 
unbounded. In order to obtain a more e�  cient estimator for the parameter , a sample mean of the 
mean series , when 
unbounded. In order to obtain a more e�  cient estimator for the parameter 

, can be taken, i.e., the following estimator can be used:

                                                           
                           (19)

Here,  and  are the harmonic numbers, with 
. � e estimator  is also unbiased for the parameter , but its weights are more pronounced 

at the ‘older’ time points of the realization of the series 
 is also unbiased for the parameter 

. � is is also consistent with the fact that 
the covariances of RVs 
at the ‘older’ time points of the realization of the series 

 depend on these ‘older’ time indices. For these reasons, the estimator 
. � is is also consistent with the fact that 

 is 
more e�  cient than , which can be shown using a procedure similar as in (Jovanović, Stojanović, Kuk, 
Popović, & Čisar, 2022) and (Stojanović, Bakouch, Ljajko, & Božović, 2023). It is shown here that the 
asymptotic values of variances of the estimators 
Popović, & Čisar, 2022) and (Stojanović, Bakouch, Ljajko, & Božović, 2023). It is shown here that the 

 and 
Popović, & Čisar, 2022) and (Stojanović, Bakouch, Ljajko, & Božović, 2023). It is shown here that the 

 are, respectively:

� us, the estimator  is (asymptotically) more e�  cient than , because it is valid:

Finally, let us point out that the Cauchy distribution has a special problem of its “heavy tail”, which 
prevents the previously described estimations of the parameters of the GSB process. For instance, esti-
mation procedures based on moments cannot be applied in this case, because the mean and variance 
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of the Cauchy distribution do not exist, while maximum likelihood estimation (MLE) requires some 
complex calculations. For these reasons, the so-called empirical characteristic function (ECF) method 
will be used here (see, e.g. (Ljajko, Stojanović, Tošić, & Božović, 2023)), but due to the certain com-
plexity of this method, it will not be described here in detail.

Application in the Network Intrusion Detection

In the following is given the application of the GSB process in the dynamic analysis of aggregate tra�  c 
and potential detection of unusual amounts of tra�  c that may be a sign of unauthorized access. In-
ternet tra�  c data (in bits) used for analysis in this paper comes from an ISP and represents open data 
set from the web site Datamarket.com. In this analysis, these data are divided into two subsets. First, 
named Series A, represents aggregate tra�  c (in bits) in the backbone of the UK academic network. 
Data are collected at � ve-minute intervals, during exactly � ve days of observation, between 19 No-
vember 2004 at 09:30 and 24 November 2005 at 09:25. Second one, named Series B, corresponds to the 
hourly data of the transatlantic link with centres in 11 European cities, collected from 06:57 on 7 June 
to 11:17 on 31 July 2005. In this way, tra�  c samples of length  and , respectively, 
were obtained, the dynamics of which can be seen in the following Figure 2.

(a) (b)

Figure 2 Dynamics of aggregate tra�  cs (in bits): (a) Series A; (b) Series B.

Based on them, it can be clearly concluded that there are pronounced and permanent � uctuations in 
both series. � ey are especially emphasized in Series A, where there is a distinct aperiodicity in its dy-
namics. On the other hand, in the case of Series B, there is a periodic dynamic of the volume of tra�  c, 
which is expected with this kind of data. � e basic statistical indicators of both series are given in the 
following Table 2.

Table 2 Basic statistical indicators of aggregate network tra�  c

Statistics
Series A Series B

Tra�  c Log-volumes Tra�  c Log-volumes
Mean 5188.7  8.4672 4.57E+10 24.3906
Median 4445.0  8.3995 3.55E+10 24.2936
Mode N/A  N/A N/A N/A
Sample variance 4,802,193  0.1759 6.67E+20 0.3099
Stand. deviation 2191.4  0.4195 2.58E+10 0.5567



Stochastic modeling of the network intrusion detection threshold 19

Skewness 0.7745 -0.0110 0.7270 0.2036
Kurtosis 2.7757  2.4321 2.0864 1.7674
Minimum 1529  7.3324 1.32E+10 23.3068
Maximum 10,671  9.2753 1.01E+11 25.3371

In addition to the basic tra�  c data, Table 2 also shows descriptive statistics of the so-called log-volumes:

                                                                              (20)

where ( ) are aggregate tra�  cs (in bits) of observed Series A and B. Log-volumes also represent 
an aggregate indicator, obtained as a natural logarithm of the tra�  c data volumes. As is pointed from 
several authors, e.g. (So, Chen, Chiang, & Lin, 2007), their usage changes the interpretation of activ-
ity shocks, because unexpected values are not a� ected by the growth trend in their dynamics. Also, 
the variance of log-volatility shocks is more uniform across the sample, that is, the timeline of the 
observed data, which can be seen from Table 2, too. In addition, the corresponding Split-MA(1) pro-
cesses for both series are read as follows:

i.e., they represent the so-called log-returns of aggregate tra�  c volumes.

We further consider the possibility of using the GSB process as a suitable stochastic model of loga-
rithmic volume dynamics. According to them, as well as using Equations (1) and (3), the martingale 
means  and innovations  can be obtained by iterative procedure:

                                                                                                
   (21)

where  and  is the estimated critical value, obtained by using Equation (11). As initial values 
in (21), values  as well as 

 is the estimated critical value, obtained by using Equation (11). As initial values 
,  were taken. � e estimated values of 

basic statistical indicators of the increments , , as well as two modelled series, martingale 
means ,  and innovation series , , are shown in the following Table 3.
Note � rst that both Series A and B have similar statistical indicators, which indicates a certain simi-
larity in their dynamics and other stochastic characteristics. � is can be seen by comparing statistical 
indicators of the increments (
larity in their dynamics and other stochastic characteristics. � is can be seen by comparing statistical 

), 
larity in their dynamics and other stochastic characteristics. � is can be seen by comparing statistical 

, and the innovation series (
larity in their dynamics and other stochastic characteristics. � is can be seen by comparing statistical 

), . It is noticeable 
that the sample means of both series are close to zero, that is, they have the property of symmetry of 
their empirical distributions.

Table 3 Statistical indicators of increments, martingale means and innovations of the GSB processes

Statistics
Series A Series B

Mean 2.25E-04 8.4747 -0.0074 5.93E-04 24.410 -0.0274
Median -8.26E-04 8.4031 -0.0102 -2.80E-02 24.359 -0.0279
Mode N/A 8.6716 N/A N/A 24.267 N/A
Sample variance 8.70E-04 0.1779 0.0034 0.0283 0.3127 0.0766
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Stand. deviation 0.0295 0.4218 0.0582 0.1681 0.5592 0.27670.2767
Skewness -2.2574 -0.0900 -0.0436 1.3059 0.3127 1.00091.0009
Kurtosis 2.3966 2.4052 2.1456 1.9767 1.5896 2.87032.8703
Minimum -0.2992 7.3700 -0.3951 -0.4726 23.429 -0.8103-0.8103
Maximum 0.1580 9.2753 0.2082 0.6074 25.238 1.15391.1539

As an illustration, Figure 3 shows the empirical distribution of both innovation series, as well as their As an illustration, Figure 3 shows the empirical distribution of both innovation series, as well as their 
� tting with the three distributions mentioned earlier. It is noticeable that � tting with non-Gaussian dis-� tting with the three distributions mentioned earlier. It is noticeable that � tting with non-Gaussian dis-
tributions (Laplace and Cauchy) is somewhat more adequate than the standard Gaussian distribution.tributions (Laplace and Cauchy) is somewhat more adequate than the standard Gaussian distribution.

Figure 3 Empirical distribution of GSB process innovations (given by histograms) according Empirical distribution of GSB process innovations (given by histograms) according
to theoretical distributions (given by lines).

In the following, using the previously described estimation procedure, the parameters of both time se-In the following, using the previously described estimation procedure, the parameters of both time se-
ries are estimated. Table 4 shows the estimates obtained by applying the above-mentioned procedures, ries are estimated. Table 4 shows the estimates obtained by applying the above-mentioned procedures, ries are estimated. Table 4 shows the estimates obtained by applying the above-mentioned procedures, ries are estimated. Table 4 shows the estimates obtained by applying the above-mentioned procedures, 
that is, two kinds of parameters estimates. Additionally, some other estimates, such as the � rst-order that is, two kinds of parameters estimates. Additionally, some other estimates, such as the � rst-order 
sample correlation , and the estimates of the threshold parameter , are also shown. We can no-, are also shown. We can no-
tice that the condition  is satis� ed in both series cases, which enables the estimation  is satis� ed in both series cases, which enables the estimation 
of the parameter .

Table 4 Estimated parameters values of the log-volumes series

Parameters estimates Series A Series B

Mean value
16.832 12.672
17.004 12.587

Sample correlation -0.1911 -0.3948

� reshold parameter
0.2362 0.6523

0.3766 0.5546

Critical value
0.0196 0.2868
0.0459 0.1487

Scale parameter
0.5201 0.5069

0.4520 0.5113
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Figure 4 Plots above: Dynamics of empirical and modeled data for Series A;
Graph below: Realization of the Noise-Indicator of Series A.

� e agreement between the modelled and actual data can be seen in above plots of Figures 4 and 5, 
where in addition to the observed log-volume values ( ), the modelled martingale mean values ( ), 
increments ( ) and innovations ( ) are also shown. It is noticeable high agreement between these 
series, which can be explained by the theoretical � ndings presented in Section 2. Namely, the martin-
gale means ( ) are constant in the case when there were no pronounced � uctuations of the series
( ) in the previous time period. Conversely, when � uctuations are pronounced, there is a change in 
the value of the martingale means, in which case the values of the series ( ) and ( ) are then equal.

Finally, the simplest way to detect pronounced � uctuations is based on the value of the Noise-Indica-
tor, that is, the 0-1 series ( ), which in this case take unit values. As its name suggests, the indicator (
) “reacts” to pronounced (and unexpected) changes in network tra�  c values. � erefore, the case  
can be considered as “situation” when there is an unusual change in the � uctuations of the observed 
data series. As an illustration of the aforementioned facts, the realizations of the Noise-Indicators (

), , for both series are shown in the below graphs at Figures 4 and 5. Moreover, as already 
mentioned earlier, in the case of Series B, there are periodic changes in its values, which can also be 
observed in the realizations of the indicator ( ).
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Figure 5 Plots above: Dynamics of empirical and modeled data for Series B;
Graph below: Realization of the Noise-Indicator of Series B.

Conclusion

� e application of the GSB process presented here con� rms its possibility in modelling actual the 
network intrusion detection. It is worth to notice that one of the advantages of this kind of stochastic 
modelling is that it allows the simultaneous use of both stationary and non-stationary components. 
� ereby, the asymptotic behavior of these series and the corresponding estimates thus obtained are 
of particular importance. It should also be noted that the proposed parameter estimation procedure 
can be implemented algorithmically in a relatively simple way. Finally, let us notice that for threshold 
parameter estimation some other methods can be used, such as the Empirical Characteristic Function 
(ECF) method described in (Stojanović, Milovanović, & Jelić, 2016). Certain modi� cations of this 
approach are certainly desirable in some future research, in order to more successfully detect various 
types of attacks on computer networks and other important information systems.
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