• Ana Todorović VINČA Institute of Nuclear Sciences National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
  • Katarina Bobić VINČA Institute of Nuclear Sciences National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
  • Dunja Drakulić VINČA Institute of Nuclear Sciences National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia


Biological agents, bioagents detection, biosensors, nanotechnology, genomic sequencing, machine learning


Purpose: Biological agents, such as bacteria, viruses, fungi and toxins, pose a significant threat to public health, so the timely and accurate detection of these agents is essential for effective response and mitigation. The traditional methods for detection are usually time-consuming, enable to detect unknown or emerging pathogens, typically require skilled personnel, and suffer from inherent limitations such as limited sensitivity, and low specificity.

Design/Methods/Approach: The systematic literature review and content analysis methods were applied along with comparative assessment and secondary data analysis.

Findings: The implementation of contemporary technologies has significantly increase sensitivity, specificity, speed, portability, and generally improved traditional methods for detection of biological agents. Portable and real-time monitoring capabilities were achieved through innovative approaches like biosensors, which use bioreceptors and nanotechnology. Genomic sequencing enables fast identification and characterization of different biological agents, including unknown and emerging pathogens. Machine learning-based algorithms are used to analyze large datasets, identify patterns and rapidly classify and identify new agents with high accuracy. Finally, multidisciplinary approaches that combine knowledge and techniques from different disciplines display encouraging possibilities to transform the landscape of biological warfare, optimize early detection of bioagents, reduce response times, and improve decision-making processes.

Originality/Value: Overall, the originality and value of this paper lie in its integrating and systematic approach to methods and techniques from diverse disciplines into a comprehensive, comparative and multidimensional study of contemporary technologies used for detection of biological agents.


Banerjee, S. (2020). Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega, 5(5), 2041–2048.

Büyükköroğlu, G., Dora, D. D., Özdemir, F., & Hızel, C. (2018). Techniques for Protein Analysis. In Omics Technologies and Bio-Engineering (pp. 317–351). Elsevier.

Chenau, J., Fenaille, F., Caro, V., Haustant, M., Diancourt, L., Klee, S. R., Junot, C., Ezan, E., Goossens, P. L., & Becher, F. (2014). Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Molecular & Cellular Proteomics: MCP, 13(3), 716–732.

Chinnadayyala, S. R., Park, J., Le, H. T. N., Santhosh, M., Kadam, A. N., & Cho, S. (2019). Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosensors and Bioelectronics, 126, 68–81.

Drakulić, D., Veličković, N., Stanojlović, M., Grković, I., Mitrović, N., Lavrnja, I., & Horvat, A. (2013). Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. Journal of Neuroendocrinology, 25(7), 605–616.

Etrych, T., Janoušková, O., & Chytil, P. (2019). Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics, 11(9), 471.

Feist, P., & Hummon, A. B. (2015). Proteomic challenges: Sample preparation techniques for microgram-quantity protein analysis from biological samples. International Journal of Molecular Sciences, 16(2), 3537–3563.

Fu, X., Sun, J., Liang, R., Guo, H., Wang, L., & Sun, X. (2021). Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends in Food Science & Technology, 116, 115–129.

Fu, X., Liu, Y., Chen, Q., Fu, Y., & Cui, T. J. (2022). Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances. Frontiers in Physics, 10, 869537.

Grigorov, I., Pejić, S., Todorović, A., Drakulić, D., Veljković, F., Vukajlović, J. M., Bobić, K., Soldatović, I., Đurašević, S., Jasnić, N., Stanković, S., Glumac, S., Mihailović-Vučinić, V., & Milenković, B. (2023). Serum High-Mobility Group Box 1 and Heme Oxygenase-1 as Biomarkers in COVID-19 Patients at Hospital Admission. International Journal of Molecular Sciences, 24(17), 13164.

He, Z., Yang, C., Yang, C., Qi, R. Z., Po-Ming Tam, J., & Yu, W. (2010). Optimization-Based Peptide Mass Fingerprinting for Protein Mixture Identification. Journal of Computational Biology, 17(3), 221–235.

Janik, E., Ceremuga, M., Niemcewicz, M., & Bijak, M. (2020). Dangerous Pathogens as a Potential Problem for Public Health. Medicina, 56(11), 591.

Janik-Karpinska, E., Ceremuga, M., Niemcewicz, M., Podogrocki, M., Stela, M., Cichon, N., & Bijak, M. (2022). Immunosensors—The Future of Pathogen Real-Time Detection. Sensors, 22(24), 9757.

Jayathirtha, M., Dupree, E. J., Manzoor, Z., Larose, B., Sechrist, Z., Neagu, A.-N., Petre, B. A., & Darie, C. C. (2021). Mass Spectrometric (MS) Analysis of Proteins and Peptides. Current Protein & Peptide Science, 22(2), 92–120.

Jo, Y., Park, S., Jung, J., Yoon, J., Joo, H., Kim, M., Kang, S.-J., Choi, M. C., Lee, S. Y., & Park, Y. (2017). Holographic deep learning for rapid optical screening of anthrax spores. Science Advances, 3(8), e1700606.

Jones, L. M. (2020). Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochemical Society Transactions, 48(3), 945–954.

Kabiraz, M. P., Majumdar, P. R., Mahmud, M. M. C., Bhowmik, S., & Ali, A. (2023). Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon, 9(4), e15482.

Kaur, U., Johnson, D. T., Chea, E. E., Deredge, D. J., Espino, J. A., & Jones, L. M. (2019). Evolution of Structural Biology through the Lens of Mass Spectrometry. Analytical Chemistry, 91(1), 142–155.

Kuswandi, B., & Ensafi, A. A. (2020). Perspective—Paper-Based Biosensors: Trending Topic in Clinical Diagnostics Developments and Commercialization. Journal of The Electrochemical Society, 167(3), 037509.

Liu, C., Jiang, D., Xiang, G., Liu, L., Liu, F., & Pu, X. (2014). An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. The Analyst, 139(21), 5460–5465.

Manganiello, G., Nicastro, N., Caputo, M., Zaccardelli, M., Cardi, T., & Pane, C. (2021). Functional Hyperspectral Imaging by High-Related Vegetation Indices to Track the Wide-Spectrum Trichoderma Biocontrol Activity Against Soil-Borne Diseases of Baby-Leaf Vegetables. Frontiers in Plant Science, 12, 630059.

Mangayarkarasi, V., Sneka, P., Sujith, R.& Jayaprakash. (2019). Ergonomic Diagnostic Tool based on Chip Mini RT-PCR for Diagnosis of Pulmonary and Extra Pulmonary Tuberculosis. Journal of Pure and Applied Microbiology, 13(2), 1185–1190.

Metkar, S. K., & Girigoswami, K. (2019). Diagnostic biosensors in medicine – A review. Biocatalysis and Agricultural Biotechnology, 17, 271–283.

Mir, T. U. G., Wani, A. K., Akhtar, N., Sena, S., & Singh, J. (2022). Microbial forensics: A potential tool for investigation and response to bioterrorism. Health Sciences Review, 5, 100068.

Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21(4), 1109.

Neagu, A.-N., Jayathirtha, M., Baxter, E., Donnelly, M., Petre, B. A., & Darie, C. C. (2022). Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules (Basel, Switzerland), 27(8), 2411.

Netz, E., Dijkstra, T. M. H., Sachsenberg, T., Zimmermann, L., Walzer, M., Monecke, T., Ficner, R., Dybkov, O., Urlaub, H., & Kohlbacher, O. (2020). OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS. Molecular & Cellular Proteomics, 19(12), 2157–2168.

Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials (Basel, Switzerland), 12(14), 2303.

Popović, N., Stojiljković, V., Pejić, S., Todorović, A., Pavlović, I., Gavrilović, L., & Pajović, S. B. (2019). Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium. Oxidative Medicine and Cellular Longevity, 2019, 8745376.

Rampler, E., Abiead, Y. E., Schoeny, H., Rusz, M., Hildebrand, F., Fitz, V., & Koellensperger, G. (2021). Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage, and Throughput. Analytical Chemistry, 93(1), 519–545.

Shen, M., Zhou, Y., Ye, J., Abdullah Al-Maskri, A. A., Kang, Y., Zeng, S., & Cai, S. (2020). Recent advances and perspectives of nucleic acid detection for coronavirus. Journal of Pharmaceutical Analysis, 10(2), 97–101.

Singh, A., Lantigua, D., Meka, A., Taing, S., Pandher, M., & Camci-Unal, G. (2018). Paper-Based Sensors: Emerging Themes and Applications. Sensors, 18(9), 2838.

Singh, A., Sharma, A., Ahmed, A., Sundramoorthy, A. K., Furukawa, H., Arya, S., & Khosla, A. (2021). Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors, 11(9), 336.

Su, Z., McDonnell, D., Bentley, B. L., He, J., Shi, F., Cheshmehzangi, A., Ahmad, J., & Jia, P. (2021). Addressing Biodisaster X Threats With Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. Journal of Medical Internet Research, 23(5), e26109.

Virgen, C. A., Fox, J. D., Santariello, P., Winfield, J. L., Wright, K. C., & Verbeck, G. F. (2021). Portable membrane inlet mass spectrometric detection and analysis of chemical warfare agent simulants at the U.S. Army Dugway Proving Ground S/K challenge event. International Journal of Mass Spectrometry, 468, 116635.

Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown III, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS sensors, 3(10), 1894-2024.

Wang, H., So, P.-K., Habib, A., Xu, Y., & Bianchi, F. (2023). Editorial: Ambient ionization mass spectrometry: From fundamentals to real-life applications. Frontiers in Chemistry, 11, 1182894.

Watrous, J. D., & Dorrestein, P. C. (2011). Imaging mass spectrometry in microbiology. Nature Reviews Microbiology, 9(9), 683–694.

Yang, X., Yang, K., Luo, Y., & Fu, W. (2016). Terahertz spectroscopy for bacterial detection: Opportunities and challenges. Applied Microbiology and Biotechnology, 100(12), 5289–5299.

Yuan, X., Sui, G., Zhang, D., Chen, M., & Zhao, W. (2022). Recent developments and trends of automatic nucleic acid detection systems. Journal of Biosafety and Biosecurity, 4(1), 54–58.

Zeng, X., & Ma, B. (2021). MSTracer: A Machine Learning Software Tool for Peptide Feature Detection from Liquid Chromatography–Mass Spectrometry Data. Journal of Proteome Research, 20(7), 3455–3462.

Zhang, M., Wu, J., Shi, Z., Cao, A., Fang, W., Yan, D., Wang, Q., & Li, Y. (2022). Molecular Methods for Identification and Quantification of Foodborne Pathogens. Molecules (Basel, Switzerland), 27(23), 8262.

Zhang, Y., Liu, H., Yang, Z., Ji, S., Wang, J., Pang, P., Feng, L., Wang, H., Wu, Z., & Yang, W. (2015). An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Analytical Methods, 7(15), 6213–6219.

Zhou, X., Zhang, W., & Ouyang, Z. (2022). Recent advances in on-site mass spectrometry analysis for clinical applications. TrAC Trends in Analytical Chemistry, 149, 116548.

Ziółkowski, R., Oszwałdowski, S., Kopyra, K. K., Zacharczuk, K., Zasada, A. A., & Malinowska, E. (2020). Toward Fluorimetric-Paired-Emitter-Detector-Diode test for Bacillus anthracis DNA based on graphene oxide. Microchemical Journal, 154, 104592.






Natural and Applied Sciences in Forensics, Cybercrime and Security