INNOVATIVE AND MULTIDISCIPLINARY APPROACHES IN DETECTING BIOLOGICAL AGENTS USING CONTEMPORARY TECHNOLOGIES
Keywords:
Biological agents, bioagents detection, biosensors, nanotechnology, genomic sequencing, machine learningAbstract
Purpose: Biological agents, such as bacteria, viruses, fungi and toxins, pose a significant threat to public health, so the timely and accurate detection of these agents is essential for effective response and mitigation. The traditional methods for detection are usually time-consuming, enable to detect unknown or emerging pathogens, typically require skilled personnel, and suffer from inherent limitations such as limited sensitivity, and low specificity.
Design/Methods/Approach: The systematic literature review and content analysis methods were applied along with comparative assessment and secondary data analysis.
Findings: The implementation of contemporary technologies has significantly increase sensitivity, specificity, speed, portability, and generally improved traditional methods for detection of biological agents. Portable and real-time monitoring capabilities were achieved through innovative approaches like biosensors, which use bioreceptors and nanotechnology. Genomic sequencing enables fast identification and characterization of different biological agents, including unknown and emerging pathogens. Machine learning-based algorithms are used to analyze large datasets, identify patterns and rapidly classify and identify new agents with high accuracy. Finally, multidisciplinary approaches that combine knowledge and techniques from different disciplines display encouraging possibilities to transform the landscape of biological warfare, optimize early detection of bioagents, reduce response times, and improve decision-making processes.
Originality/Value: Overall, the originality and value of this paper lie in its integrating and systematic approach to methods and techniques from diverse disciplines into a comprehensive, comparative and multidimensional study of contemporary technologies used for detection of biological agents.
References
Banerjee, S. (2020). Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega, 5(5), 2041–2048. https://doi.org/10.1021/acsomega.9b03764
Büyükköroğlu, G., Dora, D. D., Özdemir, F., & Hızel, C. (2018). Techniques for Protein Analysis. In Omics Technologies and Bio-Engineering (pp. 317–351). Elsevier. https://doi.org/10.1016/B978-0-12-804659-3.00015-4
Chenau, J., Fenaille, F., Caro, V., Haustant, M., Diancourt, L., Klee, S. R., Junot, C., Ezan, E., Goossens, P. L., & Becher, F. (2014). Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Molecular & Cellular Proteomics: MCP, 13(3), 716–732. https://doi.org/10.1074/mcp.M113.032946
Chinnadayyala, S. R., Park, J., Le, H. T. N., Santhosh, M., Kadam, A. N., & Cho, S. (2019). Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosensors and Bioelectronics, 126, 68–81. https://doi.org/10.1016/j.bios.2018.10.038
Drakulić, D., Veličković, N., Stanojlović, M., Grković, I., Mitrović, N., Lavrnja, I., & Horvat, A. (2013). Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. Journal of Neuroendocrinology, 25(7), 605–616. https://doi.org/10.1111/jne.12037
Etrych, T., Janoušková, O., & Chytil, P. (2019). Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics, 11(9), 471. https://doi.org/10.3390/pharmaceutics11090471
Feist, P., & Hummon, A. B. (2015). Proteomic challenges: Sample preparation techniques for microgram-quantity protein analysis from biological samples. International Journal of Molecular Sciences, 16(2), 3537–3563. https://doi.org/10.3390/ijms16023537
Fu, X., Sun, J., Liang, R., Guo, H., Wang, L., & Sun, X. (2021). Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends in Food Science & Technology, 116, 115–129. https://doi.org/10.1016/j.tifs.2021.07.006
Fu, X., Liu, Y., Chen, Q., Fu, Y., & Cui, T. J. (2022). Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances. Frontiers in Physics, 10, 869537. https://doi.org/10.3389/fphy.2022.869537
Grigorov, I., Pejić, S., Todorović, A., Drakulić, D., Veljković, F., Vukajlović, J. M., Bobić, K., Soldatović, I., Đurašević, S., Jasnić, N., Stanković, S., Glumac, S., Mihailović-Vučinić, V., & Milenković, B. (2023). Serum High-Mobility Group Box 1 and Heme Oxygenase-1 as Biomarkers in COVID-19 Patients at Hospital Admission. International Journal of Molecular Sciences, 24(17), 13164. https://doi.org/10.3390/ijms241713164
He, Z., Yang, C., Yang, C., Qi, R. Z., Po-Ming Tam, J., & Yu, W. (2010). Optimization-Based Peptide Mass Fingerprinting for Protein Mixture Identification. Journal of Computational Biology, 17(3), 221–235. https://doi.org/10.1089/cmb.2009.0160
Janik, E., Ceremuga, M., Niemcewicz, M., & Bijak, M. (2020). Dangerous Pathogens as a Potential Problem for Public Health. Medicina, 56(11), 591. https://doi.org/10.3390/medicina56110591
Janik-Karpinska, E., Ceremuga, M., Niemcewicz, M., Podogrocki, M., Stela, M., Cichon, N., & Bijak, M. (2022). Immunosensors—The Future of Pathogen Real-Time Detection. Sensors, 22(24), 9757. https://doi.org/10.3390/s22249757
Jayathirtha, M., Dupree, E. J., Manzoor, Z., Larose, B., Sechrist, Z., Neagu, A.-N., Petre, B. A., & Darie, C. C. (2021). Mass Spectrometric (MS) Analysis of Proteins and Peptides. Current Protein & Peptide Science, 22(2), 92–120. https://doi.org/10.2174/1389203721666200726223336
Jo, Y., Park, S., Jung, J., Yoon, J., Joo, H., Kim, M., Kang, S.-J., Choi, M. C., Lee, S. Y., & Park, Y. (2017). Holographic deep learning for rapid optical screening of anthrax spores. Science Advances, 3(8), e1700606. https://doi.org/10.1126/sciadv.1700606
Jones, L. M. (2020). Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochemical Society Transactions, 48(3), 945–954. https://doi.org/10.1042/BST20190794
Kabiraz, M. P., Majumdar, P. R., Mahmud, M. M. C., Bhowmik, S., & Ali, A. (2023). Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon, 9(4), e15482. https://doi.org/10.1016/j.heliyon.2023.e15482
Kaur, U., Johnson, D. T., Chea, E. E., Deredge, D. J., Espino, J. A., & Jones, L. M. (2019). Evolution of Structural Biology through the Lens of Mass Spectrometry. Analytical Chemistry, 91(1), 142–155. https://doi.org/10.1021/acs.analchem.8b05014
Kuswandi, B., & Ensafi, A. A. (2020). Perspective—Paper-Based Biosensors: Trending Topic in Clinical Diagnostics Developments and Commercialization. Journal of The Electrochemical Society, 167(3), 037509. https://doi.org/10.1149/2.0092003JES
Liu, C., Jiang, D., Xiang, G., Liu, L., Liu, F., & Pu, X. (2014). An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. The Analyst, 139(21), 5460–5465. https://doi.org/10.1039/C4AN00976B
Manganiello, G., Nicastro, N., Caputo, M., Zaccardelli, M., Cardi, T., & Pane, C. (2021). Functional Hyperspectral Imaging by High-Related Vegetation Indices to Track the Wide-Spectrum Trichoderma Biocontrol Activity Against Soil-Borne Diseases of Baby-Leaf Vegetables. Frontiers in Plant Science, 12, 630059. https://doi.org/10.3389/fpls.2021.630059
Mangayarkarasi, V., Sneka, P., Sujith, R.& Jayaprakash. (2019). Ergonomic Diagnostic Tool based on Chip Mini RT-PCR for Diagnosis of Pulmonary and Extra Pulmonary Tuberculosis. Journal of Pure and Applied Microbiology, 13(2), 1185–1190. https://doi.org/10.22207/JPAM.13.2.58
Metkar, S. K., & Girigoswami, K. (2019). Diagnostic biosensors in medicine – A review. Biocatalysis and Agricultural Biotechnology, 17, 271–283. https://doi.org/10.1016/j.bcab.2018.11.029
Mir, T. U. G., Wani, A. K., Akhtar, N., Sena, S., & Singh, J. (2022). Microbial forensics: A potential tool for investigation and response to bioterrorism. Health Sciences Review, 5, 100068. https://doi.org/10.1016/j.hsr.2022.100068
Naresh, V., & Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109
Neagu, A.-N., Jayathirtha, M., Baxter, E., Donnelly, M., Petre, B. A., & Darie, C. C. (2022). Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules (Basel, Switzerland), 27(8), 2411. https://doi.org/10.3390/molecules27082411
Netz, E., Dijkstra, T. M. H., Sachsenberg, T., Zimmermann, L., Walzer, M., Monecke, T., Ficner, R., Dybkov, O., Urlaub, H., & Kohlbacher, O. (2020). OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS. Molecular & Cellular Proteomics, 19(12), 2157–2168. https://doi.org/10.1074/mcp.TIR120.002186
Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials (Basel, Switzerland), 12(14), 2303. https://doi.org/10.3390/ma12142303
Popović, N., Stojiljković, V., Pejić, S., Todorović, A., Pavlović, I., Gavrilović, L., & Pajović, S. B. (2019). Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium. Oxidative Medicine and Cellular Longevity, 2019, 8745376. https://doi.org/10.1155/2019/8745376
Rampler, E., Abiead, Y. E., Schoeny, H., Rusz, M., Hildebrand, F., Fitz, V., & Koellensperger, G. (2021). Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage, and Throughput. Analytical Chemistry, 93(1), 519–545. https://doi.org/10.1021/acs.analchem.0c04698
Shen, M., Zhou, Y., Ye, J., Abdullah Al-Maskri, A. A., Kang, Y., Zeng, S., & Cai, S. (2020). Recent advances and perspectives of nucleic acid detection for coronavirus. Journal of Pharmaceutical Analysis, 10(2), 97–101. https://doi.org/10.1016/j.jpha.2020.02.010
Singh, A., Lantigua, D., Meka, A., Taing, S., Pandher, M., & Camci-Unal, G. (2018). Paper-Based Sensors: Emerging Themes and Applications. Sensors, 18(9), 2838. https://doi.org/10.3390/s18092838
Singh, A., Sharma, A., Ahmed, A., Sundramoorthy, A. K., Furukawa, H., Arya, S., & Khosla, A. (2021). Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors, 11(9), 336. https://doi.org/10.3390/bios11090336
Su, Z., McDonnell, D., Bentley, B. L., He, J., Shi, F., Cheshmehzangi, A., Ahmad, J., & Jia, P. (2021). Addressing Biodisaster X Threats With Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. Journal of Medical Internet Research, 23(5), e26109. https://doi.org/10.2196/26109
Virgen, C. A., Fox, J. D., Santariello, P., Winfield, J. L., Wright, K. C., & Verbeck, G. F. (2021). Portable membrane inlet mass spectrometric detection and analysis of chemical warfare agent simulants at the U.S. Army Dugway Proving Ground S/K challenge event. International Journal of Mass Spectrometry, 468, 116635. https://doi.org/10.1016/j.ijms.2021.116635
Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown III, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS sensors, 3(10), 1894-2024. https://doi.org/10.1021/acssensors.8b00420
Wang, H., So, P.-K., Habib, A., Xu, Y., & Bianchi, F. (2023). Editorial: Ambient ionization mass spectrometry: From fundamentals to real-life applications. Frontiers in Chemistry, 11, 1182894. https://doi.org/10.3389/fchem.2023.1182894
Watrous, J. D., & Dorrestein, P. C. (2011). Imaging mass spectrometry in microbiology. Nature Reviews Microbiology, 9(9), 683–694. https://doi.org/10.1038/nrmicro2634
Yang, X., Yang, K., Luo, Y., & Fu, W. (2016). Terahertz spectroscopy for bacterial detection: Opportunities and challenges. Applied Microbiology and Biotechnology, 100(12), 5289–5299. https://doi.org/10.1007/s00253-016-7569-6
Yuan, X., Sui, G., Zhang, D., Chen, M., & Zhao, W. (2022). Recent developments and trends of automatic nucleic acid detection systems. Journal of Biosafety and Biosecurity, 4(1), 54–58. https://doi.org/10.1016/j.jobb.2022.02.001
Zeng, X., & Ma, B. (2021). MSTracer: A Machine Learning Software Tool for Peptide Feature Detection from Liquid Chromatography–Mass Spectrometry Data. Journal of Proteome Research, 20(7), 3455–3462. https://doi.org/10.1021/acs.jproteome.0c01029
Zhang, M., Wu, J., Shi, Z., Cao, A., Fang, W., Yan, D., Wang, Q., & Li, Y. (2022). Molecular Methods for Identification and Quantification of Foodborne Pathogens. Molecules (Basel, Switzerland), 27(23), 8262. https://doi.org/10.3390/molecules27238262
Zhang, Y., Liu, H., Yang, Z., Ji, S., Wang, J., Pang, P., Feng, L., Wang, H., Wu, Z., & Yang, W. (2015). An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Analytical Methods, 7(15), 6213–6219. https://doi.org/10.1039/C5AY01439E
Zhou, X., Zhang, W., & Ouyang, Z. (2022). Recent advances in on-site mass spectrometry analysis for clinical applications. TrAC Trends in Analytical Chemistry, 149, 116548. https://doi.org/10.1016/j.trac.2022.116548
Ziółkowski, R., Oszwałdowski, S., Kopyra, K. K., Zacharczuk, K., Zasada, A. A., & Malinowska, E. (2020). Toward Fluorimetric-Paired-Emitter-Detector-Diode test for Bacillus anthracis DNA based on graphene oxide. Microchemical Journal, 154, 104592. https://doi.org/10.1016/j.microc.2019.104592