THE INFLUENCE OF TIME ON OXIDATION PROCESS OF FLUORESCEIN-CHITOSAN POWDER CONJUGATES USED TO DEVELOP LATENT FINGERPRINTS ON DIFFERENT SUBSTRATES

Authors

  • Nemanja Vučković University of Criminal Investigation and Police Studies, Belgrade, Serbia
  • Nevena Prlainović University of Belgrade, Faculty of Technology and Metallurgy
  • Nikola Milašinović University of Criminal Investigation and Police Studies, Belgrade, Serbia

Keywords:

Chitosan, Itaconic Acid, Fluorescein, Sodium-tripolyphosphate, Fingerprints, Forensics

Abstract

Purpose

The application of fluorescent powders is of great significance for development of latent fingerprints on some unconventional substrates, such as firearms, skin, multicolored surfaces, etc. Therefore, researchers are constantly improving these formulations in order to increase their sensitivity and obtain adequate contrast.

Design/Methods/Approach

This paper deals with chitosan-based powder systems conjugated with fluorescein (FL) and crosslinked with sodium-tripolyphosphate (Na-TPP), obtained by simple ionotropic gelation process. Prepared powders were used to visualize latent fingerprints deposited onto non-porous (glass), semi-porous (varnish paper) and porous (wood) surfaces, with the aim to enhance the quality of developed fingerprints by fluorescence assisted by ultraviolet (UV) light. The effect of time on oxidation of fluorescein in the conjugates used to develop traces was also investigated in order to determine whether the color change appears, as well as whether it affects the quality of the visualized fingerprints over time.

Findings

Fourier-transform infrared spectroscopy (FT-IR) analyses confirmed interactions between components of the system and the formation of conjugates. Optical microscopy indicated that prepared powders show uniformity in shape and size, supporting binding to the sweat and lipid fingerprint residues.

Originality/Value

Prepared powder showed good fluorescence under UV light and satisfying development of latent fingerprints deposited onto different substrates. The results indicated that prepared bio-based powder system could complement some of the routinely used (fluorescent) systems, particularly due to relatively low price and non-toxic (eco-friendly) properties.

Author Biographies

Nemanja Vučković, University of Criminal Investigation and Police Studies, Belgrade, Serbia

MSc; Teaching Assistant the Department of Forensic Engineering, at the University of Criminal Investigation and Police Studies, Belgrade, Serbia

Nevena Prlainović, University of Belgrade, Faculty of Technology and Metallurgy

PhD; Assistant Professor at the Department of Organic Chemistry, at the Faculty of Technology and Metallurgy, University of Belgrade, Serbia

Nikola Milašinović, University of Criminal Investigation and Police Studies, Belgrade, Serbia

PhD; Full Professor at the Department of Forensic Engineering, at the University of Criminal Investigation and Police Studies, Belgrade, Serbia

References

Ali, S. W., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438-446. doi:https://doi.org/10.1016/j.carbpol.2010.08.004.

Amata, B., Aprea, G. M., Chiuri, A., & Zampa, F. (2015). Fingerprint on trigger: A real case. Forensic Science International, 253, e25-e27. doi:https://doi.org/10.1016/j.forsciint.2015.05.024.

Araya-Hermosilla, E., Muñoz, D., Orellana, S., Yáñez, A., Olea, A. F., Oyarzun-Ampuero, F., & Moreno-Villoslada, I. (2014). Immobilization of rhodamine 6G in calcium alginate microcapsules based on aromatic–aromatic interactions with poly(sodium 4-styrenesulfonate). Reactive and Functional Polymers, 81, 14-21. doi:https://doi.org/10.1016/j.reactfunctpolym.2014.03.017.

Barros, H. L., & Stefani, V. (2019). Micro-structured fluorescent powders for detecting latent fingerprints on different types of surfaces. Journal of Photochemistry and Photobiology A: Chemistry, 368, 137-146. doi:https://doi.org/10.1016/j.jphotochem.2018.09.046.

Bumbrah, G. S., Sharma, R., & Jasuja, O. (2016). Emerging latent fingerprint technologies: a review. Research and Reports in Forensic Medical Science, 6, 39-50. https://doi.org/10.2147/RRFMS.S94192.

BVDA. (n.d.). Fluorescent fingerprint powders. Accessed August 16, 2023. https://www.bvda.com/en/fluorescent-powders.

Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2004). Fingerprints and Other Ridge Skin Impressions (2nd ed.). Boca Raton, Florida: CRC Press, Taylor & Francis.

Chávez, D., Garcia, C. R., Oliva, J., & Diaz-Torres, L. A. (2021). A review of phosphorescent and fluorescent phosphors for fingerprint detection. Ceramics International, 47(1), 10-41. doi:https://doi.org/10.1016/j.ceramint.2020.08.259.

Chen, Y.-H., Kuo, S.-Y., Tsai, W.-K., Ke, C.-S., & Liao, C.-H. (2016). Dual Colorimetric and Fluorescent Imaging of Latent Fingerprints on Both Porous and Nonporous Surfaces with Near-Infrared Fluorescent Semiconducting Polymer Dots. Analytical Chemistry, 88(23), 11616–11623. doi:https://doi.org/10.1021/acs.analchem.6b03178.

Lynn Peavey Company. (2013). Safety Data Sheet – LP Dual Use Fingerprint Powder. Downloaded August 17, 2023. https://lynnpeavey.com/wp-content/MSDS/SDS_dual_use_fingerprint_powder.pdf.

Daluz, H. M. (2019). Fingerprint Analysis Laboratory Workbook, Second Edition. Boca Raton: CRC Press, Taylor & Francis.

Färber, D., Seul, A., Weisser, H.-J., & Bohnert, M. (2010). Recovery of latent fingerprints and DNA on human skin. Journal of Forensic Sciences, 55(6), 1457-1461. doi:doi/10.1111/j.1556-4029.2010.01476.x.

Gürbüz, S., Özmen Monkul, B., İpeksaç, T., Gürtekin Seden, M., & Erol, M. (2015). A systematic study to understand the effects of particle size distribution of magnetic fingerprint powders on surfaces with various porosities. Journal of Forensic Sciences, 60(3), 727-736. https://doi.org/10.1111/1556-4029.12719.

Hejjaji, E. M., Smith, A. M., & Morris, G. A. (2017) (a). Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications. International Journal of Biological Macromolecules, 95, 564-573. doi:https://doi.org/10.1016/j.ijbiomac.2016.11.092.

Hejjaji, E. M., Smith, A. M., & Morris, G. A. (2017) (b). The potential of chitosan-tripolyphosphate microparticles in the visualisation of latent fingermarks. Food Hydrocolloids, 71, 290-298. doi:https://doi.org/10.1016/j.foodhyd.2016.12.020.

International Fingerprint Research Group (IFRG). (2014). Guidelines for the Assessment of Fingermark Detection Techniques. Downloaded August 14, 2022. https://ifrg.unil.ch/wp-content/uploads/2014/06/IFRG-Research-Guidelines-v1-Jan-2014.pdf.

Kumar, N., Udayabhanu, Mahadevan, K. M., & Nagaraju, G. (2020). Development and detection of level II and III features of latent fingerprints using highly sensitive AIE based coumarin fluorescent derivative. Journal of Science: Advanced Materials and Devices, 5(4), 520-526. doi:https://doi.org/10.1016/j.jsamd.2020.09.004.

Levinton-Shamuilov, G., Cohen, Y., Azoury, M., Chaikovsky, A., & Almog, J. (2005). Genipin, a novel fingerprint reagent with colorimetric and fluorogenic activity, part II: optimization, scope and limitations. Journal of Forensic Sciences, 50(6), 1367-1371.

Li, J., Jiao, Z., Zhang, P., Wan, X., Song, C., Guo, Z., Huang, X., & Tang, B. Z. (2020). Development of AIEgens–Montmorillonite Nanocomposite Powders for Computer-Assistant Visualization of Latent Fingermarks. Materials Chemistry Frontiers, 2020(7), 1-7. doi:doi:10.1039/D0QM00059K.

Milašinović, N. (2016). Polymers in Criminalistics: Latent Fingerprint Detection and Enhancement – From Idea to Practical Application. NBP – Journal of Criminalistics and Law, 133-148. https://doi.org/10.5937/nabepo21-11888.

Milašinović, N., & Koturević, B. (2016). Uvod u hemiju: praktikum za laboratorijske vežbe. Belgrade: Academy of Criminalistic and Police Studies.

Milašinović, N., Čalija, B., Vidović, B., Crevar Sakač, M., Vujić, Z., & Knežević-Jugović, Z. (2016). Sustained release of α-lipoic acid from chitosan microbeads synthetized by inverse emulsion method. Journal of the Taiwan Institute of Chemical Engineers, 60, 106-112. https://doi.org/10.1016/j.jtice.2015.10.037.

Mohan, J. (2003). Organic Analytical Chemistry: Theory and Practice (1st ed.). Rohtak, India: Alpha Science Itd.

Mozayani, A., & Noziglia, C. (2006). The Forensic Laboratory Handbook Procedures and Practice. Totowa, New Jersey: Humana press.

Pirillo, S., Cornaglia, L., Ferreira, M. L., & Rueda, E. H. (2008). Removal of Fluorescein using different iron oxides as adsorbents: Effect of pH. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2), 636-643. doi:https://doi.org/10.1016/j.saa.2008.01.018.

Prlainović, N. Ž., Bezbradica, D. I., Knežević-Jugović, Z. D., Stevanović, S. I., Avramov Ivić, M. L., Uskoković, P. S., & Mijin, D. Ž. (2013). Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes. Journal of Industrial and Engineering Chemistry, 19(1), 279–285. doi:doi:10.1016/j.jiec.2012.08.012.

Prlainović, N. Ž., Bezbradica, D. I., Rogan, J. R., Uskoković, P. S., Mijin, D. Ž., & Marinković, A. D. (2016). Surface functionalization of oxidized multi-walled carbon nanotubes: Candida rugosa lipase immobilization. Comptes Rendus Chimie, 19(3), 363–370. doi:https://doi.org/10.1016/j.crci.2015.10.008.

Saldías, C., Díaz, D. D., Bonardd, S., Soto-Marfull, C., Cordoba, A., Saldías, S., Quezada, C., Radic, D., & Leiva, Á. (2018). In situ preparation of film and hydrogel bio-nanocomposites of chitosan/fluorescein-copper with catalytic activity. Carbohydrate Polymers, 180, 200-208. doi:https://doi.org/10.1016/j.carbpol.2017.10.018.

Vadivel, R., Nirmala, M., & Anbukumaran, K. (2021). Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. Forensic Chemistry, 24, 1-18. doi:https://doi.org/10.1016/j.forc.2021.100339.

Vučković, N., Dimitrijević, S., & Milašinović, N. (2020). Visualization of Latent Fingerprints Using Dextran-based Micropowders Obtained From Anthocyanin Solution. Turkish Journal of Forensic Sciences and Crime Studies, 2(2), 3–53. ISSN: 2687-3397.

Vučković, N., Glođović, N., Radovanović, Ž., Janaćković, Đ., & Milašinović, N. (2020). A novel chitosan/tripolyphosphate/L-lysine conjugates for latent fingerprints detection and enhancement. Journal of Forensic Sciences, 66(1), 149–160. doi: 10.1111/1556-4029.14569.

Wang, K., & Liu, Q. (2014). Chemical structure analyses of phosphorylated chitosan. Carbohydrate Research, 386, 48-56. https://doi.org/10.1016/j.carres.2013.12.021.

Wang, L., Roitberg, A., Meuse, C., & Gaigalas, A. K. (2001). Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(9), 1781-1791. https://doi.org/10.1016/S1386-1425(01)00408-5.

Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Chuanbin, M. (2017). Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 27(14), 1-16. doi:doi: 10.1002/adfm.201606243.

Žalnėravičius, R., Paškevičius, A., Mažeika, K., & Jagminas, A. (2018). Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms. Applied Surface Science, 435, 141-148. https://doi.org/10.1016/j.apsusc.2017.11.028.

Downloads

Published

2024-04-29

Issue

Section

Natural and Applied Sciences in Forensics, Cybercrime and Security