DEVELOPMENT OF LATENT FINGERMARKS ON DIFFERENT SUBSTRATES USING POLYANILINE-BASED POWDER OBTAINED BY SIMPLE PRECIPITATING METHOD

Authors

  • Nemanja Vučković University of Criminal Investigation and Police Studies, Belgrade, Serbia
  • Nikola Glođović University of Criminal Investigation and Police Studies, Belgrade, Serbia
  • Nikola Milašinović University of Criminal Investigation and Police Studies, Belgrade, Serbia

Keywords:

Polyaniline, Precipitating Method, Latent Fingermarks, Forensic Science

Abstract

Purpose: Polymeric materials are widely used in various industries and fields, such as vehicle and air industry, medicine, pharmacy and nanotechnology, but still insufficiently investigated in forensic applications. Their specific properties could be of a great significance in forensic trace analysis and they could also gratify the cost-benefit requirements.

Design/Methods/Approach: This paper deals with polyaniline-based polymer powder, obtained by simple precipitating method, with the aim to develop latent fingermarks deposited onto different surfaces, often found at the crime scene.

Findings: Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR FT-IR) analyses confirmed interactions between components of the system. Optical microscopy and scanning electron microscope (SEM) analysis suggested that prepared powder has fine, uniform particles, which easily bind to the sweat and lipid fingerprint residues. Prepared powder was also used to visualize latent fingermarks left on different non-porous, semi-porous and porous surfaces, i.e. plywood, glass and paper.

Originality/Value: Obtained results showed that prepared powder could be used as a substitution for commercially employed fingerprint powders used in everyday forensic practice/trace analysis.

References

1. Beresford, A. L., & Hillman, A. R. (2010). Electrochromic Enhancement of Latent Fingerprints on Stainless Steel Surfaces. Analytical Chemistry, 82(2), 483–486.
2. Beresford, A. L., Brown, R. M., Hillman, A. R., & Bond, J. W. (2012). Comparative Study of Electrochromic Enhancement of Latent Fingerprints with Existing Development Techniques. Journal of Forensic Sciences, 57(1), 93-102.
3. Beygisangchin, M., Abdul Rashid, S., Shafie, S., Sadrolhosseini, A. R., & Lim, H. N. (2021). Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers, 13(12), 1-46.
4. Bumbrah, G. S., Sharma, R., & Jasuja, O. (2016). Emerging latent fingerprint technologies: a review. Research and Reports in Forensic Medical Science, 6, 39-50.
5. Cadd, S., Islam, M., Manson, P., & Bleay, S. (2015). Fingerprint composition and aging: A literature review. Science & Justice, 55(4), 219-238.
6. Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2004). Fingerprints and Other Ridge Skin Impressions (2nd ed.). Boca Raton, Florida: CRC Press, Taylor & Francis.
7. Ćirić-Marjanović, G. (2010). Polyaniline Nanostructures. In A. Eftekhari, Nanostructured Conductive Polymers (pp. 19-74). Chippenham, UK: John Wiley & Sons.
8. Datta, A. K., Lee, H. C., Ramotowski, R., & Gaensslen, R. E. (2001). Advances in Fingerprint Technology (2nd ed.). CRC Press, Taylor & Francis.
9. Durose, M. R., Burch, A. M., Walsh, K., & Tiry, E. (2016). Publicly Funded Forensic Crime Laboratories: Resources and Services, 2014. Bureau of Justice Statistics.
10. Gürbüz, S., Özmen Monkul, B., İpeksaç, T., Gürtekin Seden, M., & Erol, M. (2015). A systematic study to understand the effects of particle size distribution of magnetic fingerprint powders on surfaces with various porosities. Journal of Forensic Sciences, 60(3), 727-736.
11. Habib, M. A., & Maheswari, S. P. (1989). Electrochromism of Polyaniline: An In Situ FTIR Study. Journal of The Electrochemical Society, 136(4), 1050-1053.
12. Heeger, A. J. (2001). Nobel Lecture: Semiconducting and metallic polymers: The fourth. Reviews of Modern Physics, 73, 1-20.
13. Ilic, M., Koglin, E., Pohlmeier, A., Narres, H. D., & Schwuger, M. J. (2000). Adsorption and Polymerization of Aniline on Cu(II)-Montmorillonite: Vibrational Spectroscopy and ab Initio Calculation. Langmuir, 16(23), 8946–8951
14. International Fingerprint Research Group (IFRG). (2014). Guidelines for the Assessment of Fingermark Detection Techniques. Downloaded June 1, 2022. https://ifrg.unil.ch/wp-content/uploads/2014/06/IFRG-Research-Guidelines-v1-Jan-2014.pdf.
15. Kulkarni, M. V., Viswanath, A. K., & Khanna, P. K. (2006). Synthesis and Characterization of Conducting Polyaniline Doped with Polymeric Acids. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 43(4-5), 759-771.
16. Lee, J., Pyo, M., Lee, S., Kim, J., Ra, M., Kim, W.-Y., Park, B. J., Lee, C. W., & Kim, J.-M. (2014). Hydrochromic conjugated polymers for human sweat pore mapping. Nature Communications, 5, 10.
17. Lennard, C. (2007). Fingerprint detection: current capabilities. Australian Journal of Forensic Sciences, 39(2), 55-71.
18. Milašinović, N. (2016). Polymers in Criminalistics: Latent Fingerprint Detection and Enhancement – From Idea to Practical Application. NBP – Journal of Criminalistics and Law, 133-148.
19. Milašinović, N., Čalija, B., Vidović, B., Crevar Sakač, M., Vujić, Z., & Knežević-Jugović, Z. (2016). Sustained release of α-lipoic acid from chitosan microbeads synthetized by inverse emulsion method. Journal of the Taiwan Institute of Chemical Engineers, 60, 106-112.
20. Milašinović, N., Kalagasidis Krušić, M., Knežević-Jugović, Z., Filipović, J. (2010). Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. International Journal of Pharmaceutics, 383, 53-61.
21. Milašinović, N., & Koturević, B. (2016). Uvod u hemiju: praktikum za laboratorijske vežbe. Belgrade: Academy of Criminalistic and Police Studies.
22. Mozayani, A., & Noziglia, C. (2006). The Forensic Laboratory Handbook Procedures and Practice. Totowa, New Jersey: Humana press.
23. Quillard, S., Louarn, G., Lefrant, S., & Macdiarmid, A. G. (1994). Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B, 50(17), 12496-12508.
24. Sen, D., Mohite, B., & Kayande, N. (2019). Review on Polymer. International Journal of Pharmaceutical Sciences and Medicine, 4(10), 1-15.
25. Sonne, W. J. (2006). Criminal Investigation for the Professional Investigator (1st ed.). Boca Raton: Taylor & Francis.
26. Trchová, M., Šeděnková, I., & Stejskal, J. (2005). In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation. Synthetic Metals, 154(1-3), 1-4.
27. Vučković, N., Dimitrijević, S., & Milašinović, N. (2020). Visualization of Latent Fingerprints Using Dextran-based Micropowders Obtained From Anthocyanin Solution. Turkish Journal of Forensic Sciences and Crime Studies, 2(2), 3–53.
28. Vučković, N., Glođović, N., Radovanović, Ž., Janaćković, Đ., & Milašinović, N. (2020). A novel chitosan/tripolyphosphate/L-lysine conjugates for latent fingerprints detection and enhancement. Journal of Forensic Sciences, 66(1), 149–160. doi:DOI: 10.1111/1556-4029.14569
29. Yilmaz, F. (2007). Synthesis of Polyaniline (Emeraldine Base) at 25°C. Polyaniline: Synthesis, Characterization, Solution Properties and Composites. Doctoral dissertation, 64-66. Ankara, Turkey: The Graduate School of Natural and Applied Sciences of Middle East Technical University.
30. Yuan, C., Li, M., Wang, M., Cao, H., & Lin, T. (2021). A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints. Electrochimica Acta, 390, 1-15.

Downloads

Published

2023-04-06

Issue

Section

Natural and Applied Sciences in Forensics, Cybercrime and Security